集成学习(下)Blending集成学习算法

1. Blending集成学习思路

Blending集成学习方式:
(1) 将数据划分为训练集和测试集(test_set),其中训练集需要再次划分为训练集(train_set)和验证集
(val_set);
(2) 创建第一层的多个模型,这些模型可以使同质的也可以是异质的;
(3) 使用train_set训练步骤2中的多个模型,然后用训练好的模型预测val_set和test_set得到val_predict,
test_predict1;
(4) 创建第二层的模型,使用val_predict作为训练集训练第二层的模型;
(5) 使用第二层训练好的模型对第二层测试集test_predict1进行预测,该结果为整个测试集的结果。

bending是一种模型融合方法,对于一般的blending,主要思路是把原始的训练集先分成两部分,比如70%的数据作为新的训练集,剩下30%的数据作为测试集。第一层我们在这70%的数据上训练多个模型,然后去预测那30%数据的label。在第二层里,我们就直接用这30%数据在第一层预测的结果做为新特征继续训练即可。

在这里插入图片描述

在(2)-(3)步中,我们使用训练集创建了K个模型,如SVM、random forests、XGBoost等,这个是第一层的模型。 训练好模型后将验证集输入模型进行预测,得到K组不同的输出,我们记作 ,然后将测试集输入K个模型也得到K组输出,我们记作 ,其中 的样本数与验证集一致, 的样本数与测试集一致。如果总的样本数有10000个样本,那么使用5600个样本训练了K个模型,输入验证集2400个样本得到K组
2400个样本的结果 ,输入测试集2000个得到K组2000个样本的结果 。
在(4)步中,我们使用K组2400个样本的验证集结果 作为第二层分类器的特征,验证集的2400个标签为因变量,训练第二层分类器,得到2400个样本的输出。
在(5)步中,将输入测试集2000个得到K组2000个样本的结果 放入第二层分类器,得到2000个测试集的预测结果。

在这里插入图片描述
Blending集成方式的优劣:
优点:实现简单,没有太多的理论的分析。
缺点:只使用了一部分数据集作为留出集进行验证,对数据来说是很奢侈浪费。

实例演示

# 加载相关工具包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use("ggplot")
%matplotlib inline
import seaborn as sns
# 创建数据
from sklearn import datasets
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
data, target = make_blobs(n_samples=10000, centers=2, random_state=1, cluster_std=1.0 )
## 创建训练集和测试集
X_train1,X_test,y_train1,y_test = train_test_split(data, target, test_size=0.2,
random_state=1)
## 创建训练集和验证集
X_train,X_val,y_train,y_val = train_test_split(X_train1, y_train1, test_size=0.3,
random_state=1)
print("The shape of training X:",X_train.shape)
print("The shape of training y:",y_train.shape)
print("The shape of test X:",X_test.shape)
print("The shape of test y:",y_test.shape)
print("The shape of validation X:",X_val.shape)
print("The shape of validation y:",y_val.shape)

The shape of training X: (5600, 2)
The shape of training y: (5600,)
The shape of test X: (2000, 2)
The shape of test y: (2000,)
The shape of validation X: (2400, 2)
The shape of validation y: (2400,)

# 设置第一层分类器
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
clfs = [SVC(probability = True),RandomForestClassifier(n_estimators=5, n_jobs=-1,
criterion='gini'),KNeighborsClassifier()]
# 设置第二层分类器
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
# 输出第一层的验证集结果与测试集结果
val_features = np.zeros((X_val.shape[0],len(clfs))) # 初始化验证集结果
test_features = np.zeros((X_test.shape[0],len(clfs))) # 初始化测试集结果
for i,clf in enumerate(clfs):
    clf.fit(X_train,y_train)
    val_feature = clf.predict_proba(X_val)[:, 1]
    test_feature = clf.predict_proba(X_test)[:,1]
    val_features[:,i] = val_feature
    test_features[:,i] = test_feature
# 将第一层的验证集的结果输入第二层训练第二层分类器
lr.fit(val_features,y_val)
# 输出预测的结果
from sklearn.model_selection import cross_val_score
cross_val_score(lr,test_features,y_test,cv=5)

array([1., 1., 1., 1., 1.])

热门文章

暂无图片
编程学习 ·

exe4j详细使用教程(附下载安装链接)

一、exe4j介绍 ​ exe4j是一个帮助你集成Java应用程序到Windows操作环境的java可执行文件生成工具,无论这些应用是用于服务器,还是图形用户界面(GUI)或命令行的应用程序。如果你想在任务管理器中及Windows XP分组的用户友好任务栏…
暂无图片
编程学习 ·

AUTOSAR从入门到精通100讲(126)-浅谈车载充电系统通信方案

01 引言 本文深入研究车载充电系统策略,设计出一套基于电动汽车电池管理系统与车载充电机的CAN通信协议,可供电动汽车设计人员参考借鉴。 02 电动汽车充电系统通讯网络 电动汽车整车控制系统中采用的是CAN总线通信方式,由一个整车内部高速CAN网络、内部低速CAN网络和一个充电…
暂无图片
编程学习 ·

CMake(九):生成器表达式

当运行CMake时,开发人员倾向于认为它是一个简单的步骤,需要读取项目的CMakeLists.txt文件,并生成相关的特定于生成器的项目文件集(例如Visual Studio解决方案和项目文件,Xcode项目,Unix Makefiles或Ninja输入文件)。然…
暂无图片
编程学习 ·

47.第十章 网络协议和管理配置 -- 网络配置(八)

4.3.3 route 命令 路由表管理命令 路由表主要构成: Destination: 目标网络ID,表示可以到达的目标网络ID,0.0.0.0/0 表示所有未知网络,又称为默认路由,优先级最低Genmask:目标网络对应的netmaskIface: 到达对应网络,应该从当前主机哪个网卡发送出来Gateway: 到达非直连的网络,…
暂无图片
编程学习 ·

元宇宙技术基础

请看图: 1、通过AR、VR等交互技术提升游戏的沉浸感 回顾游戏的发展历程,沉浸感的提升一直是技术突破的主要方向。从《愤怒的小鸟》到CSGO,游戏建模方式从2D到3D的提升使游戏中的物体呈现立体感。玩家在游戏中可以只有切换视角,进而提升沉浸…
暂无图片
编程学习 ·

flink的伪分布式搭建

一 flink的伪分布式搭建 1.1 执行架构图 1.Flink程序需要提交给 Job Client2.Job Client将作业提交给 Job Manager3.Job Manager负责协调资源分配和作业执行。 资源分配完成后,任务将提交给相应的 Task Manage。4.Task Manager启动一个线程以开始执行。Task Manage…
暂无图片
编程学习 ·

十进制正整数与二进制字符串的转换(C++)

Function one: //十进制数字转成二进制字符串 string Binary(int x) {string s "";while(x){if(x % 2 0) s 0 s;else s 1 s;x / 2;}return s; } Function two: //二进制字符串变为十进制数字 int Decimal(string s) {int num 0, …
暂无图片
编程学习 ·

[含lw+源码等]微信小程序校园辩论管理平台+后台管理系统[包运行成功]Java毕业设计计算机毕设

项目功能简介: 《微信小程序校园辩论管理平台后台管理系统》该项目含有源码、论文等资料、配套开发软件、软件安装教程、项目发布教程等 本系统包含微信小程序做的辩论管理前台和Java做的后台管理系统: 微信小程序——辩论管理前台涉及技术:WXML 和 WXS…
暂无图片
编程学习 ·

树莓派驱动DHT11温湿度传感器

1,直接使用python库 代码如下 import RPi.GPIO as GPIO import dht11 import time import datetimeGPIO.setwarnings(True) GPIO.setmode(GPIO.BCM)instance dht11.DHT11(pin14)try:while True:result instance.read()if result.is_valid():print(ok)print(&quo…
暂无图片
编程学习 ·

ELK简介

ELK简介 ELK是三个开源软件的缩写,Elasticsearch、Logstash、Kibana。它们都是开源软件。不过现在还新增了一个 Beats,它是一个轻量级的日志收集处理工具(Agent),Beats 占用资源少,适合于在各个服务器上搜集日志后传输给 Logstas…
暂无图片
编程学习 ·

Linux 基础

通常大数据框架都部署在 Linux 服务器上,所以需要具备一定的 Linux 知识。Linux 书籍当中比较著名的是 《鸟哥私房菜》系列,这个系列很全面也很经典。但如果你希望能够快速地入门,这里推荐《Linux 就该这么学》,其网站上有免费的电…
暂无图片
编程学习 ·

Windows2022 无线网卡装不上驱动

想来 Windows2022 和 windows10/11 的驱动应该差不多通用的,但是死活装不上呢? 搜一下,有人提到 “默认安装时‘无线LAN服务’是关闭的,如果需要开启,只需要在“添加角色和功能”中,选择开启“无线LAN服务…
暂无图片
编程学习 ·

【嵌入式面试宝典】版本控制工具Git常用命令总结

目录 创建仓库 查看信息 版本回退 版本检出 远程库 Git 创建仓库 git initgit add <file> 可反复多次使用&#xff0c;添加多个文件git commit -m <message> 查看信息 git status 仓库当前的状态git diff 差异对比git log 历史记录&#xff0c;提交日志--pret…
暂无图片
编程学习 ·

用Postman生成测试报告

newman newman是一款基于nodejs开发的可以运行postman脚本的工具&#xff0c;使用Newman&#xff0c;可以直接从命令运行和测试postman集合。 安装nodejs 下载地址&#xff1a;https://nodejs.org/en/download/ 选择自己系统相对应的版本内容进行下载&#xff0c;然后傻瓜式安…
暂无图片
编程学习 ·

Java面向对象之多态、向上转型和向下转型

文章目录前言一、多态二、引用类型之间的转换Ⅰ.向上转型Ⅱ.向下转型总结前言 今天继续Java面向对象的学习&#xff0c;学习面向对象的第三大特征&#xff1a;多态&#xff0c;了解多态的意义&#xff0c;以及两种引用类型之间的转换&#xff1a;向上转型、向下转型。  希望能…